Member Login

CONGRATULATIONS Akash – Confirmation of Candidature

Massive congratulations to our PhD researcher, Akash Brinly Hettiarachchi who completed his confirmation seminar last week on Wednesday, 6 March!

 

His thesis is entitled: Cobots intervention for a diverse Australian manufacturing workforce. His supervisory team include A/Prof Penny Williams, QUT and Professor Greg Hearn, QUT and the review panel included A/Prof Erika French and A/Prof Jared Donovan.

His project addresses the existing labour shortage and facilitate sustainable growth in the manufacturing sector, it is imperative to explore potential solutions for attracting and retaining a diverse workforce. This research seeks to synergise technological solutions (Cobots) with HR strategies (workforce diversity) to address the prevalent challenge of talent scarcity within the manufacturing sector.

It will investigate avenues for incorporating human and social factors into the design of Cobots and assess how this integration can help overcome potential barriers to entry and retention for a diverse manufacturing workforce. The study will adopt a qualitative research methodology, encompassing three key stages: descriptive analysis, focus group discussions, and case study analysis.

New PhD Researcher, Zongyuan Zhang

We are pleased to welcome Zongyuan Zhang, our newest team member. Zongyuan is a PhD researcher at QUT (Queensland University of Technology), supervised by Jonathan Roberts, and will be actively involved in the Biomimic Cobots program as the lead researcher on Project 1.1: Cobot contact tasks through multi-sensory deep learning.

Zongyuan’s research interests centre around the application of deep learning in the field of robotics and the study of motion theories of robots with different configurations. He has experience in control system design and mechanical structure design, and has participated in projects including underwater photography robot, driverless racing car, exoskeleton mechanical arm, dual-rotor aircraft, and remote-control robotics arm, some of which are currently undergoing commercialisation.

???? We look forward to hearing more as Zongyuan’s project progresses!

Welcome Zongyuan!

ARTICLE: Reflections from the 2023 OZCHI workshop on Empowering People in Human-Robot Collaboration

This article is written by Stine Johansen, Postdoctoral Research Fellow (Human-Robot-Interaction Program) at Australian Cobotics Centre.

 

At the OzCHI 2023 conference, researchers from the Australian Cobotics Centre (QUT and UTS) and CINTEL (CSIRO) co-organised a workshop on the topic of “Empowering People in Human-Robot Collaboration: Why, How, When, and for Whom”. Our previous workshop at the OzCHI 2022 conference showed that there is a growing interest in the area from both researchers and practitioners located in the regions of Oceania. In the 2022 workshop, discussions centred around human roles in human-robot collaboration, empathy for robots, approaches to designing and evaluating human-robot collaboration, and ethical considerations. With the 2023 workshop, we aimed to take a step further by (1) discussing underlying assumptions that shape our research and (2) identifying pathways towards shared visions for future research. While it is impossible to capture all the nuances of our discussions here, I will use the limited space in this article to provide a peek into two of the topics that emerged. I hope this can serve as an inspiration to anyone who is reflecting on the why, when, how, and who of empowering people in human-robot collaboration.

Topic 1: Robots as tools for creativity

While an increasing number of digital tools to support creative work come into the world, there are still questions left to be answered in terms of how that support can or should be designed. While a robot might aid someone in drawing, 3D printing, milling furniture, etc, it is up to people to ask the right kinds of questions for artistic expressions and experiences. Furthermore, while a robot might be able to manipulate physical materials, the processes of moulding, cutting, drawing, painting, etc., is part of an artistic conversation that artists and creative professionals have with those materials. Workshop participants proposed that there is a potential for further empirical studies of how creativity works as a basis for how robots can support that.

There are a number of examples out there where designers, developers, and artists explore roles that robots can play for creative work. Here are some that I have come across:

Youtuber and artist Jazza tried to evaluate the drawing capabilities of a small desk robot by line-us. The video starts with a highly unsuccessful replication of Jazza’s drawings and moves into an interactive game session, e.g., playing hangman. It seems that replicating an artist’s drawings is a fun gimmick but perhaps does not offer any further space for creativity. (See the video here)

The humanoid robot Ai-Da paints “self”-portraits which seems ironic when a robot inherently does not have a self or an identity—at least from the perspective of current understandings of consciousness. The artist, Aidan Meller, states that the point of Ai-Da is to raise questions around what role people have if robots are able to replicate our work. (The Guardian published this article about Ai-Da in 2021)

By the way, on the topic of robot consciousness, our workshop panel member Associate Professor Christoph Bartneck, University of Canterbury, hosts a podcast in which the topic was discussed. You can listen to the episode here.

In a more academic direction, the MIT Media Lab has conducted research on ways that robots can help children be creative. They designed a set of games that support children either through demonstrating how to implement a creative idea or by prompting children to reflect by, e.g., asking them questions. (Read about the research here)

Topic 2: Assumptions about robots

Even though, much research and development has already shown a multitude of ways that robots can perform tasks in work and everyday life, there are still underlying assumptions about robots and people that drive these developments. The phrases we use between ourselves, participants, collaborators, industry partners, etc, to describe a design concept or how a robot could solve a problem are part of a larger storytelling. Such storytelling comes through narratives of, e.g., robots taking jobs from workers. We might ask ourselves how we contribute to these narratives, both in public forums as well as research publications.

As a side note to this, fiction and ‘speculation’ is increasingly utilised as a tool for designing human-robot interaction. Some examples include Auger, 2014, Luria et al., 2020, and Grafström et al., 2022. Speculative design is not a new method, but rather becoming a well-established approach within human-computer interaction (HCI), interaction design, and now also human-robot interaction.

What are our visions and how can we get there?

Our shared visions for the future of human-robot collaboration are not necessarily surprising, but thankfully reassuring, that collaborative robots should support people. There are, however, a multitude of ways that people can be supported. These range from support (1) during an actual task, e.g., heavy lifting, improving work safety, and providing effective communication, (2) by fitting into dynamic and unstructured environments, and (3) as part of the foundation for people to have a healthy and rewarding work life.

Different pathways exist towards making this reality. Here are a few examples taken from the workshop discussion. First, while the Australasian context might present some unique challenges, we can still learn from other parts of the world, e.g., in terms of socio-economic pressures that drive robotic development. Second, we can continuously reframe the problems we choose to prioritise. There are perhaps opportunities to move away from the framing of robots performing “dull, dirty, and dangerous” work to robots performing collaborative, inclusive, and even creative work. Third, increasingly dynamic settings require robotic interfaces that provide modular solutions. This prompts the question of how end users might use modular robotic systems, and whether this approach is best suited for certain problems and contexts. Finally, participants agreed that we increasingly need a network of researchers in this area to support each other.

In the spirit of the last point, I invite researchers and practitioners to visit the Australian Cobotics Centre at QUT, Brisbane. You are also welcome to join our public seminars, both as audience and presenter. I look forward to continuing this crucial conversation.

References

James Auger. 2014. Living with robots: a speculative design approach. J. Hum.-Robot Interact. 3, 1 (February 2014), 20–42. https://doi.org/10.5898/JHRI.3.1.Auger

Anna Grafström, Moa Holmgren, Simon Linge, Tomas Lagerberg, and Mohammad Obaid. 2022. A Speculative Design Approach to Investigate Interactions for an Assistant Robot Cleaner in Food Plants. In Adjunct Proceedings of the 2022 Nordic Human-Computer Interaction Conference (NordiCHI ’22). Association for Computing Machinery, New York, NY, USA, Article 50, 1–5. https://doi.org/10.1145/3547522.3547682

Michal Luria, Ophir Sheriff, Marian Boo, Jodi Forlizzi, and Amit Zoran. 2020. Destruction, Catharsis, and Emotional Release in Human-Robot Interaction. J. Hum.-Robot Interact. 9, 4, Article 22 (December 2020), 19 pages. https://doi.org/10.1145/3385007

Online links

Jazza trying the line-us robot:

https://www.youtube.com/watch?v=oZYqrPnpDoY

Article about Ai-Da:

https://www.theguardian.com/culture/2021/may/18/some-people-feel-threatened-face-to-face-with-ai-da-the-robot-artist

MIT Media Lab projects on child-robot interaction for creativity:

https://www.media.mit.edu/projects/creativity-robots/overview/

Christoph Bartneck’s podcast episode on robot consciousness:

https://open.spotify.com/episode/5sFNVXTiv9Sh3u360DlZFy?si=808266bb27ea4b73

Two papers accepted for ISEA 2024

Our researchers have two papers accepted to the International Symposium on Electronic Art (ISEA 2024) which will be held in Meanjin (Brisbane) from 21-29th June.

  • Robotic Blended Sonification: Consequential Robot Sound as Creative Material for Human-Robot Interaction, by Postdoctoral Research Fellow, Dr Stine Johansen from QUT (Queensland University of Technology) with co-authors Yanto Browning, Anthony Brumpton, Jared Donovan, Markus Rittenbruch.
  • Track Back: A Human Robot Movement Installation Utilising Unity Digital Twin and Human Bio-mimicry by Chief Investigator, Dr John McCormick from Swinburne University of Technology. As part of the Symposium, John will present an exhibition demonstration at UAP | Urban Art Projects.

Find out more: https://lnkd.in/gkXdKrAJ

Goodbye & Thank You

Farewell to Our THWS Visiting Researchers!

It’s time to say goodbye to our three visiting researchers from the Technical University of Applied Sciences Würzburg-Schweinfurt (THWS) who have been a part of our team at the Australian Cobotics Centre (ACC).

We extend our sincere thanks to Tobias Kaupp, Adrian Muller, and Usama Ali for their outstanding contributions during their time with us. Wishing you all the best in your future endeavors!

Thanks for being a part of the team.

PhD Project Introductions

Collaboration and sharing of information are vital for the success of our Centre. To support this, we ask our PhD Researchers to give a brief introduction to their projects within the initial 6 months.

During our latest seminar, Eleonora Zodo and Justin Botha from QUT (Queensland University of Technology) and Danial Rizvi from University of Technology Sydney provided an outline of their projects’ objectives, methodology, and anticipated outcomes.

As they continue their research, we’ll keep you posted on their progress. Meanwhile, you can learn more about their research updates HERE.

   

ARTICLE: Human-Robot Collaboration in Healthcare: Challenges and Prospects

This article is written by Amir Asadi, PhD researcher at the Australian National University (ANU) and a visiting researcher at Australian Cobotics Centre. It draws upon the introduction section of a paper he co-authored with Associate Professor Elizabeth Williams from the Australian National University, Associate Professor Glenda Caldwell from the Queensland University of Technology, and Associate Professor Damith Herath from the University of Canberra.

Today’s global healthcare system faces a pressing challenge: ensuring equitable access to healthcare amidst a severe workforce shortage. The World Health Organization predicts a shortfall of 10 million healthcare workers by 2030 [1], a situation worsened by an ageing population, increasing demand for medical services, and the COVID-19 pandemic. This shortage leads to a heavy workload for existing healthcare professionals, which research indicates can severely affect patient care quality [2].

In response to the challenges caused by the shortage of healthcare professionals, technological innovations offer a viable approach to reduce the workload on healthcare workers, which could ultimately improve patient care and health service quality. Among many cutting-edge technologies suggested for healthcare, robotics has emerged as a particularly promising area. Robots can assist in a variety of tasks, ranging from surgical procedures to patient care and physical rehabilitation. This leads us to the Human-Robot Collaboration (HRC) concept, where humans and robots work together, leveraging each other’s strengths to achieve shared goals [3]. HRC focuses on augmenting human efforts with robotic assistance in a safe, flexible, and user-friendly manner, thereby enhancing the efficiency and effectiveness of tasks, operations, and workflows [4].

In healthcare, HRC aims to create a symbiotic relationship between healthcare professionals and robots to improve patient care. This approach spans a wide array of applications, including physical rehabilitation, support for the elderly and disabled, surgical assistance, and responses to COVID-19, such as patient handling and disinfection tasks. The breadth of HRC research reflects a commitment to addressing the healthcare system’s immediate and long-term needs.

Despite the clear advantages highlighted by research into HRC in healthcare, its integration has been gradual, reflecting the healthcare sector’s traditionally cautious approach towards new technologies [5]. This slow pace of adoption is multifaceted. The initial aspect encompasses general challenges associated with introducing new technologies into healthcare, such as infrastructure limitations, resistance from healthcare professionals, complex market dynamics, and regulatory barriers [6]. Following this, concerns particular to robots in healthcare, including safety issues, questions of effectiveness, public acceptance, and fears that robots may replace human caregivers, further slow the adoption process within healthcare environments [7]. The next dimension involves the distinct challenges of fostering a collaborative relationship between robots and human users. These challenges include developing intuitive interfaces for seamless human-robot collaboration, ensuring the reliability of robots in diverse healthcare scenarios, and addressing ethical considerations around autonomy and collaborative decision-making in patient care.

Together, these facets of challenges underscore the complexity of integrating HRC in healthcare settings and, therefore, necessitate a comprehensive approach that extends beyond mere technological considerations. This approach must encompass aspects such as regulatory compliance, ethical standards, stakeholder engagement, and infrastructural adaptation. To move forward and advance research in this field, it is crucial to adopt a holistic socio-technical perspective that acknowledges the complex interconnectedness between people, technology, environments, and workflows.

Furthermore, fostering a dialogue among multiple disciplines is imperative for the successful adoption of HRC in healthcare. The diversity of challenges that HRC is facing makes it crucial to bridge fields such as robotics, Human-Robot Interaction (HRI), human factors, medicine, nursing, social sciences, psychology, and ethics. By integrating insights from these diverse fields, the aim is to design and implement robotic technologies in a manner that not only addresses practical challenges but also enriches the efficiency and quality of healthcare services.

To conclude, we can safely say that while the journey to fully realise HRC’s potential in healthcare faces numerous obstacles, its effective adoption could transform healthcare delivery significantly, a process that requires both a socio-technical approach and a broad multidisciplinary dialogue.

References:

[1]           World Health Organization (WHO), ‘Health workforce’. Accessed: Jan. 19, 2024. [Online]. Available: https://www.who.int/health-topics/health-workforce

[2]           D. J. Elliott, R. S. Young, J. Brice, R. Aguiar, and P. Kolm, ‘Effect of Hospitalist Workload on the Quality and Efficiency of Care’, JAMA Internal Medicine, vol. 174, no. 5, pp. 786–793, May 2014, doi: 10.1001/jamainternmed.2014.300.

[3]           J. Arents, V. Abolins, J. Judvaitis, O. Vismanis, A. Oraby, and K. Ozols, ‘Human–Robot Collaboration Trends and Safety Aspects: A Systematic Review’, Journal of Sensor and Actuator Networks, vol. 10, no. 3, Art. no. 3, Sep. 2021, doi: 10.3390/jsan10030048.

[4]           L. Lu, Z. Xie, H. Wang, L. Li, E. P. Fitts, and X. Xu, ‘Measurements of Mental Stress and Safety Awareness during Human Robot Collaboration -Review’, Proceedings of the Human Factors and Ergonomics Society Annual Meeting, vol. 66, no. 1, pp. 2273–2277, Sep. 2022, doi: 10.1177/1071181322661549.

[5]           K. Nakagawa and P. Yellowlees, ‘Inter-generational Effects of Technology: Why Millennial Physicians May Be Less at Risk for Burnout Than Baby Boomers’, Curr Psychiatry Rep, vol. 22, no. 9, p. 45, Jul. 2020, doi: 10.1007/s11920-020-01171-2.

[6]           A. B. Phillips and J. A. Merrill, ‘Innovative use of the integrative review to evaluate evidence of technology transformation in healthcare’, Journal of Biomedical Informatics, vol. 58, pp. 114–121, Dec. 2015, doi: 10.1016/j.jbi.2015.09.014.

[7]           I. Olaronke, O. Ojerinde, and R. Ikono, ‘State Of The Art: A Study of Human-Robot Interaction in Healthcare’, International Journal of Information Engineering and Electronic Business, vol. 3, pp. 43–55, May 2017, doi: 10.5815/ijieeb.2017.03.06.

Meet our E.P.I.C. Researcher, Jacqueline Greentree

Jacqueline Greentree is a PhD researcher based at Queensland University of Technology and her project is part of the Human-Robot Workforce Program at the Australian Cobotics Centre.
Her current research interests include education, government policy and the intersection in preparing people for the workplaces of the future.

We interviewed Jacqueline recently to find out more about why she does what she does.

  • Tell us a bit about yourself and your research with the Centre?

I have worked in education in some form across my career starting in Government and Vocational Education and Training (VET), moving to school education and VET in Schools and most recently working in Higher Education in a range of professional positions. My research seeks to understand how well VET education prepares those seeking work in advanced manufacturing considering the technological disruptions created through the adoption of new technologies (Industry 4.0). It also seeks to discover potential improvements in policy settings to bridge the skills gap in technical and digital domains for manufacturing to ensure a responsive training system to meet future skills needs.

  • Why did you decide to be a part of the Australian Cobotics Centre?

It was a great opportunity to be part of some research that spans different disciplines but working together to achieve some new and different things. It was also an opportunity to learn more about how we will be working in the future as technology is rapidly changing work and workplaces. It was also an opportunity to dedicate myself fully to something new and different.

  • What project are you most proud of throughout your career and why?

Completing my Masters of Philosophy, it was a long road to get there and had to balance a research project while doing a demanding full time job. I am enjoying being part of the centre and not having to work full-time in a different field while trying to complete the research.

  • What do you hope the long-term impact of your work will be?

I hope it continues the conversation about the way we educate people and whether the ways we have been doing that are still fit for our current world of learning and work. I would like for it open up new possibilities for considering how we move through education systems in Australia and possibly have different ways of gaining skills that are recognised by industry.

  • Aside from your research, what topic could you give an hour-long presentation on with little to no preparation?

I find it difficult to talk for an hour on anything. If it was not my research then benefits of outdoor education/adventure challenges for kids to build resilience, perseverance and to be open to taking some appropriate risks.

Goodbye & Thank You

We are sad to farewell two of our researchers this month:

* Dr Mickey Clemon from University of Technology Sydney and co-lead of the Quality Assurance & Compliance program. Mickey has been actively involved in our Centre from the beginning, including the initial proposal

Mickey is returning to the US at the end of the year and Dr. Nathalie Sick will become co-lead of the Quality Assurance and Compliance program alongside Dr Michelle Dunn from Swinburne University of Technology.

* Dr Sean Gallagher, Chief Investigator from Swinburne University of Technology working with the Human Robot Workforce program. Sean has been a huge supporter of the Centre’s research.

Luckily for us, both will remain on as Associate Investigators. Wishing you both the best of luck with your new ventures. Thanks for being a part of the team.

2023 Symposium: PhD Poster Winners

At our annual symposium each of students were asked to create a research poster. For most of our students, this was the first research poster they have created. To support them in this, in the weeks prior, our Postdoctoral Research Fellows ran a training session on how to create an effective poster along with tips about how to engage with their audience.

The symposium provided them with an opportunity to practice talking about their research and its potential impact to those within the Centre. We also offered prizes for the top 3 posters as voted by attendees of the symposium.

Our winner was Yuan Liu from QUT (Queensland University of Technology) in our Designing Socio-Technical Robotic Systems program with Jasper Vermeulen (also from QUT and the same research program) coming second and Jagannatha Charjee Pyaraka from Swinburne University of Technology in the Biomimic Cobots Research Program taking third place.

You can view all posters on each of the PhD project pages HERE!